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Non-neutral plasma column in an asymmetric trapping field
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A non-neutral plasma column in an asymmetric trapping field is considered in this paper. It is shown that
nonlinearly interacting bulk plasma oscillations and quadrupole surface waves allow an exact analytical de-
scription. The absence of symmetry leads to nonintegrability and other nonlinear phenomena, such as passage
through different resonances and phase locking. These phenomena should be observable in experiments in-
volving elliptical traps and rotating walls and can affect the latters’ applications.
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I. INTRODUCTION

A non-neutral plasma can be a collection of identic
charges~e.g., ions or electrons! in a trap@1#. The properties
of the trapped cloud depend on the plasma density and
perature@2#. Aside from the special case of small Coulom
clusters@3#, the size of the cloud can be large compared
the interparticle spacing and the Debye length. Various c
lective phenomena, such as, plasma waves, have been
dicted and observed.

There has been much recent theoretical@4–6# and experi-
mental@7–9# interest in linear electrostatic waves in trapp
non-neutral plasmas. These modes are of importance as
destructive diagnostic tools. They can be easily excited
measured, providing useful information on the plasma sha
size, density, and temperature.

It is well known that the low-order~quadrupole! electro-
static waves in non-neutral plasmas can be described
mathematically exact manner even in the nonlinear reg
@10#. The solutions are exact in the sense that starting fr
the equations of motion for the cold plasma fluidno approxi-
mation of any kind ~e.g., series expansions or highe
harmonic truncations! needs to be made. It appears that t
spatial and temporal dependence of the plasma motion
be separated even in the nonlinear regime. The initial eq
tions are then reduced to a system of ordinary differen
equations that can be solved numerically or, in some
stances, even integrated@10,11#.

Exact solutions of the nonlinear plasma equations
rather rare, and the few cases in which they can be found
consequently rather interesting. Such solutions usually
scribe particularly simple plasma behavior. They are th
especially suitable as a starting point in understanding
underlying physics of the nonlinearity as well as the study
more complex nonlinear wave interactions. They are us
for verifying various approximations and numerical schem
and many of such solutions can also be used directly to
plain observed phenomena or indirectly for the diagnos
of the plasma.
1063-651X/2002/65~4!/046402~7!/$20.00 65 0464
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An equilibrium state of a non-neutral plasma in a ha
monic trap is the uniform ellipsoid@12,13#. The space charge
electric field within a uniformly charged ellipsoid is a linea
function of the position. A key feature of the quadrupo
modes is that the plasma conserves the ellipsoidal form
consequently the linear spatial dependence of the ele
field. Nonlinear surface waves with the same structure w
recently found for plasmas bounded by a dielectric@14–16#.
Originally, such solutions were investigated in connecti
with the gravitating fluid equilibrium@17#. The analogy is
expected, since both systems have the inverse square la
the interparticle force, whose field satisfies the Poisson eq
tion.

II. BASIC EQUATIONS

In this paper we investigate linear and nonlinear osci
tions in a non-neutral plasma cylinder. That is, the equil
rium ellipsoid is here highly elongated in thez direction. The
particles are assumed to be trapped in the external pote
field

Uext5
1
2 m~v1

2x21v2
2y2!,

wherem is the particle mass, andv1,2 are the frequencies o
the transverse oscillations. The transverse plasma siz
small as compared to the distance between the trap e
trodes, so thatUext is quadratic in terms of the Taylor expan
sion.

In contrast to earlier investigations of trapped-plasma
cillations the trapping field has no rotational symmetry. A
elliptical Paul trap@18# is an example of such asymmetry. I
a Penning trap a time-independent asymmetric trapping
tential can exist in a frame rotating with the plasma, as w
observed in a recent experiment involving a rotating wall@2#.

We also assume that the plasma is unmagnetized, as i
Paul trap. For the Penning trap our results can be app
only in the case of ‘‘Brillouin flow’’ when the plasma is
©2002 The American Physical Society02-1
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compressed to its maximum density@1#, since in the rotating
frame the plasma behaves like an unmagnetized one.

We describe the trapped plasma by the standard cold-
model, i.e., the velocityv satisfies the pressureless Eu
equation

]v

]t
1~v•“ !•v5

q

m
E2

1

m
“Uext, ~1!

where the space charge electric field is purely electrosta
E52“w, andw obeys the Poisson equation

¹2w524pqn, ~2!

whereq is the charge of the trapped particles. To close
system we have the continuity equation

]n

]t
1“•~nv!50, ~3!

wheren is the density.
For the Paul trap these equations can be applied dire

whereas for the Penning trap they are valid in the rotat
frame. In this paper the analysis will be limited to two d
mensions. We shall investigate the plasma equilibrium st
linear waves as well as exact nonlinear oscillations.

III. LINEAR WAVES

We start with the description of the equilibrium state. E
lier investigations@12,13# showed the existence of an ellip
soidal equilibrium. It can be easily verified that an immob
plasma can form a uniform cylinder with elliptical cross se
tion,

x2

a0
2

1
y2

b0
2

51,

and n5n0. The space charge electric field within such
cylinder is linear@17# and the corresponding potential is

w5pqn0~const2A1x22A2y2!, ~4!

whereA152b0 /(a01b0) andA252a0 /(a01b0).
For a steady-state (v50) equilibrium, Eqs.~1!–~3! are

reduced to the condition“(qw1Uext)50. Thus we get@2#

1
2 vp

2A15v1
2 and 1

2 vp
2A25v2

2 ,

where vp5(4pq2n0 /m)1/2 is the plasma frequency. Th
condition

v1
21v2

25vp
2 ~5!

thus uniquely determines the plasma density.
It is convenient to denote the number of particles per u

column length by the free parameterN of the system. Ac-
cordingly we can introduce the quantity
04640
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R5A N

pn0
,

which represents the typical radius of the plasma colum
The equilibrium values of the semiaxes are then

a05
v2

v1
R and b05

v1

v2
R, ~6!

and without loss of generality we can assumev1,v2, so
that a0.b0.

Apart from the steady-state equilibrium, there are ma
general dynamic equilibria withvÞ0. For instance, the
plasma can rotate within the elliptical boundary. Leavi
aside these more complicated cases, we can describe
plasma waves in terms of a dielectric tensor« i j . For study-
ing linear electrostatic waves one has then only to solve
equation] i(« i j ] jdw)50 for the perturbed electric potentia
and apply the appropriate boundary conditions.

In our model the plasma is described by the cold-plas
dielectric tensor« i j 5(12vp

2/v2)d i j , so that the perturbed
potential inside and outside the plasma obeys the Lap
equations

S 12
vp

2

v2D ¹2dw in50 and ¹2dwout50,

whereas the boundary conditions on the plasma surfaceSare

dw inuS5dwoutuS , S 12
vp

2

v2D ]

]n
dw inuS5

]

]n
dwoutuS ,

wheren is a unit vector normal toS.
One solution isv25vp

2 anddwout50. This corresponds
to bulk plasma oscillations with arbitrarydw in related to
some density variationdn. The only restriction is that the
plasma perturbation causes no change in the external po
tial. For example, the plasma cylinder can oscillate at
plasma frequency in a self-similar manner. We will consid
such a mode in the following section.

For the other solution the plasma density is unperturb
anddw is a harmonic function. A comprehensive study of t
Laplace equation for an elliptical cylinder requires Mathi
functions@19#. This will be considered elsewere, and here
restrict ourselves to the simple case of transverse t
dimensional ~2D! oscillations with dw5dw(x,y). The
plasma configuration suggests the use of elliptic coordina
jP(0,̀ ) and hP(0,2p), satisfying x5c coshj cosh and
y5c sinhj sinh, where c is, in general, a free paramete
Settingc5Aa0

22b0
2 makes the plasma boundary a surface

constantj5j0, where

j05
1

2
ln

a01b0

a02b0
.

The coordinate system (j,n) is conformal so that the
Laplace operator in the new system is proportional
]2/]j21]2/]h2. The corresponding harmonic functions a
2-2
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NON-NEUTRAL PLASMA COLUMN IN AN ASYMMETRIC . . . PHYSICAL REVIEW E 65 046402
readily obtained. An important restriction is that the elect
field dE52“dw should be finite at the ellipse focuses~e.g.,
the critical points of the coordinate system!. The solution
inside the elliptic plasma cylinder can then be written as

dw in5c1 coshmj cosmh1c2 sinhmj sinmh,

wherec1 and c2 are constants. Here the positive integerm
plays the role of the azimuthal wave number. Outside
plasma, we have

dwout5c3 exp~2mj!cosmh1c4 exp~2mj!sinmh,

because of the conditiondwout→0 at large distances. Her
c3 andc4 are constants.

Applying the boundary conditions atj5j0, we obtain the
following spectrum:

v25
1

2
vp

2F16S a02b0

a01b0
D mG , m>1 ~7!

for the oscillations.
There are two discrete series of frequencies. Fora05b0

the spectrum reduces to the familiar relationv5vp /A2 for
the electrostatic surface oscillations. Takinga0→`, m→`
and k5m/a05const, one can also reproduce the spectr
v25(1/2)vp

2@16exp(22kb0)# of surface waves in an infinite
plasma layer.

Using the expressions~6! for the semiaxes along with Eq
~5! for the plasma frequency one can rewrite the spectrum
terms of the trapping parameters. In particular, the frequ
cies with m51 are identical to the trap frequenciesv1,2.
These modes correspond to the center-of-mass motion o
column.

The potentialdw in corresponding to the quadrupolem
52 modes is a quadratic function of the Cartesian coo
nates. It follows that the deformed plasma column has a
an elliptical cross section, but generally with different orie
tation and time varying semiaxes. These oscillations can
described exactly even in the nonlinear regime. The hig
modes withm.2 involve significant changes of the plasm
shape and potential.

It should be mentioned that Eq.~7! does not cover all the
possible plasma modes. There are still perturbations tha
not involve the potential nor plasma surface motion. For
ample, we can consider a velocity perturbation of the for

vx52V
a

b
y, vy5V

b

a
x,

where V is infinitesimal and generally depends onz. The
perturbed plasma rotates within an elliptical boundary. T
frequency of such torsion modes is identically zero in
cold-fluid model. Here the restoration forces are from
correlation between the particles.

IV. A NONLINEAR SOLUTION

In this section we discuss an exact nonlinear solution r
resenting two coupled plasma modes. This is described
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the full system~1!–~3! and an additional equation for th
plasma boundary@17#

]S

]t
1~v•“ !S50, ~8!

whereS(x,t) is arbitrary and the boundary is determined
the relationS(x,t)5const. We assume that the size of t
trapped cloud is large compared to the Debye length, so
the plasma can be considered to have a sharp boundary@20#.

We assume that the perturbed plasma is uniform,n
5n(t), and has an elliptic cross section with the same o
entation of the semiaxes. Thus, we have

S~x,t !5
x2

a2
1

y2

b2
,

where the time-dependent semiaxesa(t) and b(t) are un-
known. The plasma velocity is chosen to be

vx5
ȧ

a
x, vy5

ḃ

b
y,

in accordance with the predefined elliptic shape. Here
overdots denote time derivatives. The given plasma beha
can be considered as ansa¨tz for solving Eqs.~1!–~3! and Eq.
~8!. It is easy to see that Eq.~8! is satisfied identically, and
the continuity equation results ind(nab)/dt50 so that par-
ticle density is

n~ t !5
R2

ab
n0 ,

and the solution of the Poisson equation is of a similar str
ture as in Eq.~4!, but with time-dependent density and sem
axes.

Finally, it is easy to verify that Eq.~1! leads to two ordi-
nary differential equations for the semiaxes

ä1v1
2a5vp

2 R2

a1b
, b̈1v2

2b5vp
2 R2

a1b
, ~9!

where the value ofvp is given by expression~5!.
The system~9! provides a complete description of tw

coupled nonlinear modes. Although it is rather simple, it
nevertheless nonintegrable. Aside from the two trivial ca
of a circular column and an infinite plasma layer, the syst
is associated to chaotic dynamics.

We shall first consider the basic properties of Eqs.~9!.
There is one fixed point of the motion, given by Eq.~6!. It is
always stable and corresponds to an equilibrium colum
Considering small oscillations around this point, one can
mediately obtain the linear limit of the two modes. On
mode corresponds to oscillations witha22b25const, so that
the plasma oscillates in a self-similar manner without a
perturbation of the external field. It is the bulk wave at t
plasma frequency as mentioned above. For the second m
2-3
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we haveab5const, so that the density remains unperturb
This mode can be recognized as the lower of the two qu
rupolem52 modes.

In general, we still have the bulk and quadrupole surfa
oscillations. However, in the nonlinear regime they a
coupled. Nevertheless, in two simple limiting cases the pr
lem can still be solved by direct integration. Forv15v2 we
have an axially symmetric trapping field. Equations~9! are
then clearly integrable. In fact, the quadrupole dynamics
the non-neutral plasma column in an axially symmetric tr
ping field is an integrable problem under much more gen
conditions@21#. In particular, forv1,250 we have a 2D ver-
sion of the Coulomb expansion@22#. The other simple lim-
iting case is a plasma layer in a one-dimensional trapp
field. This limit is obtained by keepingv1→0, R→`, so that
b05const. Then we havea0→` and the plasma is trappe
in the regionuyu,b0. The equation for the layer thicknes
takes the limiting formb̈1v2

2b5vp
2b0 along with the new

condition v25vp for the plasma density. The boundary
the layer oscillates at the plasma frequency. Note that
plasma density is proportional to 1/b and behaves in a non
linear manner. Similar exact one-dimensional oscillations
a plasma layer have been considered earlier@23#. Note, that
for large amplitudesb(t) is negative, whereasn(t) passes
through an infinite value. Such unphysical behavior is rela
to the neglect of the pressure forces. This occurs also in
and 3D @10#. Consequently, Eqs.~9! are not valid for very
large amplitudes.

V. NON-INTEGRABLE DYNAMICS

In this section we investigate numerically the coupl
nonlinear modes. From here on we will use dimensionl
variables. The time is normalized by 1/vp and the distance
by R. We also introduce the parameter

d5
v2

22v1
2

v1
21v2

2

describing the anisotropy of the trap. Finally, we pass to
variablesu5a1b andv5a2b in Eqs.~9! to obtain

ü1
1

2
u2

2

u
5

d

2
v, v̈1

1

2
v5

d

2
u, ~10!

wheredP(0,1). The equilibrium point is

u05
2

A12d2
, v05

2d

A12d2
,

and the linear frequencies take the form

vb51, vq5A~12d2!/2, ~11!

where vb and vq are for the bulk and quadrupole mode
respectively. An importantresonance conditionis met when
the ratiovb /vq of the frequencies is a rational number@24#.
Even in the linear approximation it is clear that for speci
values ofd different resonances can occur. We will esp
04640
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cially be interested in the low-order resonances, of the fo
3:2 for d51/3 and 2:1 ford51/A2.

For d50, Eqs.~10! describe two independent oscillator
but there is no simple way to solve the problem fordÞ0. On
the other hand, the existence of resonances suggests th
dynamics can be complicated. Thus we shall consider E
~10! more carefully. First, we note that the set~10! has a
Hamiltonian

H5
1

2
~ u̇21 v̇2!1

1

4
~u222duv1v2!12 ln

u0

u
21,

~12!

where the constant was chosen such thatH50 at equilib-
rium.

The four-dimensional phase space of the system~10! is
reduced to three dimensions by the conditionH5const. A
key question is whether an independent second integral
ists. If it does, the system would then be integrable and
phase curves lie on two-dimensional tori. A traditional w
to investigate the problem is to choose a 2D surface in
phase space and construct a map of intersections of the p
trajectory with the surface. Treating numerically the differe
trajectories we obtain aPoincarémap @25,26#.

If the system is integrable, the points would represent
intersection of the tori with the 2D surface and they wou
form smooth closed curves. In general, with sufficiently lo
integration time, most curves seem to be continuous. All
bits on each torus are characterized by two frequenc
namely,vb andvq given by Eqs.~11! in the linear limit. On
the other hand, even for ‘‘infinite’’ integration time som
orbits appear as a markedly discrete set of points on
surface of the section. They correspond to resonance
With perturbations the resonance tori can be destroyed,
viding the ‘‘seeds’’ of chaotic behavior observed in nonint
grable systems.

A series of maps with different values ofd is presented in
Figs. 1–5. All trajectories have the same energyH50.1.

FIG. 1. A Poincare´ surface of section for motions correspondin
to bulk and quadrupole modes withH50.1 andd50. The system
is integrable, nested curves represent orbits on different tori.
discrete set of points corresponds to a 17:12 resonance orbit.
point at the center represents the pure quadrupole surface m
The pure bulk mode corresponds to an orbit that surrounds
whole plot.
2-4



o
oc
th
t

t

nt

n-
ul
th

ie
tio
th

er
Fo
a

call
um-
nce

are
ical

its
-
ex-

ex-
ith
imal
f
be

-
ance
h
os.
be-
the

m
ue
lyt

rd
ica f the
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Note that the Hamiltonian~12! supports bounded motion, s
that only a finite region on the surface of the section is
cupied. The excluded region is shaded. The surface of
section is chosen to bev50.95v0 and the coordinates on tha
are plane (u,u̇). We have mapped only intersections withv̇
.0, so that each point uniquely represents the state of
system.

A typical map for the integrable cased50 is presented in
Fig. 1. We see a series of nested closed curves represe
different tori. The circles surround a point representing
periodic orbit with only the quadrupole mode excited. A
other important periodic orbit corresponds to the pure b
mode. This orbit happens to lie directly on the surface of
section~the ‘‘last’’ curve!. We will see that fordÞ0 both
periodic orbits survive and are represented by points.

The other orbits are quasiperiodical with two frequenc
vb andvq . The former has a nonlinear shift so that the ra
vb /vq varies from torus to torus. Thus the system obeys
condition of isoenergetic nondegeneracy, and when per-
turbed will be subject to the KAM theorem@25#. When the
ratio vb /vq passes through a rational value we have a p
odic orbit corresponding to the particular resonance.
small energies this ratio is close to its linear value so that

FIG. 2. Surface of section forH50.1 andd50.32. Qualitatively
it is close to that of Fig. 1, but here both periodic orbits arising fro
the quadrupole surface and the bulk oscillations can be seen. D
nonlinear coupling it is impossible to describe these orbits ana
cally.

FIG. 3. Surface of section forH50.1 andd50.33. The signifi-
cant difference from Fig. 2 is due to the appearance of the low-o
3:2 resonance torus. That torus is broken, giving rise to ellipt
and hyperbolical points.
04640
-
e

he

ing
a

k
e

s

e

i-
r
ll

resonances correspond to rational approximations toA2. We
found and displayed the lowest 17:12 resonance orbit. Re
that resonance tori can occur as frequently as rational n
bers among irrationals, but here only the lowest resona
corresponding to our particular values of energy andd is
displayed.

We now consider the perturbed system withdÞ0. In ac-
cordance with the KAM theorem most nonresonant tori
conserved and the corresponding orbits stay quasiperiod
as long asd is small. Note, that all existing resonance orb
are of high order, so that ford!1 the system can be suc
cessfully described by means of perturbation theory. For
ample, a Poincare´ plot for d50.32 ~Fig. 2! is essentially the
same as that ford50, the only difference being that now
both periodic orbits can be seen.

As mentioned, the ratiovb /vq is different for each torus
and is determined nonlinearly. Nevertheless, the linear
pressions~11! suggest that this ratio generally increases w
d, so that resonances disappear and appear. For infinites
values of the energy this happens only for a discrete set od.
For example, the resonance displayed in Fig. 1 should
observed only ford51/17. Of course, the nonlinear fre
quency shift can change this behavior and each reson
can exist in some interval ofd. These intervals increase wit
the energy, giving rise to resonance overlapping and cha

The low-order resonance tori are of special interest,
cause when perturbed they capture a significant part of

to
i-

er
l

FIG. 4. Surface of section forH50.1 andd50.69. Qualitatively
there is no difference with Fig. 2.

FIG. 5. Surface of section forH50.1 andd50.71. Again there
is a low-order resonance. It is responsible for the appearance o
unstable hyperbolic point.
2-5
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phase space. Let us now consider the low order 3:2 re
nance torus, which arises ford close to 1/3.

Figure 3 shows the surface of the section ford50.33. The
resonance comes into being and the map is significa
changed compared to Fig. 2. The resonance torus is
stroyed giving rise to a typical chain of elliptic and hype
bolic fixed points@26#. Trajectories jump successively from
island to island, gradually filling up the set of two close
curves around the elliptic points. The entire captured are
the surface of the section imitates the same 3:2 repea
pattern as the initial periodic orbit~phase locking!. For d
50.34 the resonance disappears and the surface of the
tion ~not shown! is similar to Fig. 2.

Another low-order 2:1 resonance exists ford close to
1/A2. Figures 4 and 5 show the surface of the section fod
50.69 andd50.71, respectively. Again the map is signifi
cantly changed with the birth of an unstable hyperbo
point. This resonance disappears ford50.73. A passage o
our system through other resonances can also be obse
The open (S-like! and even broken~into two parts! curves
appear in Figs. 4 and 5 due to the conditionv̇.0 in the
construction of the surface of the section. Only closed cur
will appear if one displaysall orbit intersections with the
surface of the section. Another notable feature is the e
tence of stable periodical orbits represented by isola
points for all values ofd. They give way to isolated island
of regular motion in a sea of chaotic behavior as the ene
increases.

Thus the phase space dynamics is regular when the
are intact, and exhibits features, such as, resonances
phase locking, as is typical forsoft chaos@27#. With increas-
ing energy a typical sea of chaotic behavior is obtained. T
is illustrated in Fig. 6 withd51/A2 andH54. A significant
part of the surface of the section is filled by a random spla

FIG. 6. Surface of section forH54 and d51/A2. Periodical
orbits remain, with the surrounding stable islands, but now they
separated by stochastic regions.
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of points ~generated by a single orbit!. In this region the
behavior of the system is clearly chaotic. A similar transiti
to chaos was also observed for other values ofd.

The results on transition to chaos, such as that in Fig
should be taken cautiously. All the chaotic regimes were
tained at a high value of the energy. For such energies
semiaxes can permanently change sign during the evolu
as was pointed out at the end of the preceding section.
these regimes, pressure effects, neglected in the initial e
tions, are important. In fact, all physically meaningful r
gimes described by Eqs.~10! are regular, corresponding onl
to soft chaos onset. Nevertheless, a variety of notable p
nomena typical for nonintegrable systems, such as, pas
through resonances and phase locking, are observed.

VI. CONCLUSION

We have analyzed the nonlinear equations describin
non-neutral plasma column in an electromagnetic trap. A
feature of the trapping field is the absence of rotational sy
metry, as in the elliptical Paul trap. Our results are also
plicable to the Penning trap with a rotating wall. The eq
librium plasma column has an elliptical cross section.
analytical form for the spectrum of the transverse plas
oscillations exists. The frequencies depend on the trap
rameters, plasma form, and density. Thus, our results ca
useful for explaining phenomena occurring in non-neut
plasmas as well as the diagnostics of the latter. A fully no
linear description of the low-order modes is possible. T
equations for the cold plasma fluid can be expressed in te
of two simple ordinary differential equations for the bulk an
the quadrupole surface modes. The set is found to be no
tegrable. No regime with widespread chaos was found for
present pressureless plasma model. Nevertheless, othe
portant features typical for quasiregular nonintegrable s
tems exists. These features include the birth and deca
resonances, collapse of corresponding resonance tori, p
locking, and existence of islands surrounding stable perio
cal orbits. All these nonlinear phenomena should be obs
able in experiments involving asymmetric trapping fields.
particular, we found that in the neighborhood of resonance
significant change of the plasma behavior is caused by s
changes in the anisotropy of the trap. For moderate ener
all resonances are accurately predicted by the linear exp
sions for the frequencies.
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