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Non-neutral plasma column in an asymmetric trapping field
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A non-neutral plasma column in an asymmetric trapping field is considered in this paper. It is shown that
nonlinearly interacting bulk plasma oscillations and quadrupole surface waves allow an exact analytical de-
scription. The absence of symmetry leads to nonintegrability and other nonlinear phenomena, such as passage
through different resonances and phase locking. These phenomena should be observable in experiments in-
volving elliptical traps and rotating walls and can affect the latters’ applications.
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I. INTRODUCTION An equilibrium state of a non-neutral plasma in a har-
monic trap is the uniform ellipsoifdl2,13. The space charge
A non-neutral plasma can be a collection of identicalelectric field within a uniformly charged ellipsoid is a linear
chargede.g., ions or electronsn a trap[1]. The properties function of the position. A key feature of the quadrupole
of the trapped cloud depend on the plasma density and tenftodes is that the plasma conserves the ellipsoidal form and
perature[2]. Aside from the special case of small Coulomb consequently the linear spatial dependence of the electric
clusters[3], the size of the cloud can be large compared tdfield. Nonlinear surface waves with the same structure were
the interparticle spacing and the Debye length. Various coll€cently found for plasmas bounded by a dielediti¢ 1.

lective phenomena, such as, plasma waves, have been p@[iginally, such solutions were investigated in connection
dicted and observed. with the gravitating fluid equilibriun{17]. The analogy is

There has been much recent theoretjdat6] and experi- expected, since both systems have the inverse square law of
mental[7—9] interest in linear electrostatic waves in trappedt_he interparticle force, whose field satisfies the Poisson equa-

non-neutral plasmas. These modes are of importance as notRnN-
destructive diagnostic tools. They can be easily excited and

measured, providing useful information on the plasma shape, II. BASIC EQUATIONS
size, density, and temperature.
It is well known that the low-ordeftquadrupolg electro- In this paper we investigate linear and nonlinear oscilla-

static waves in non-neutral plasmas can be described in tons in a non-neutral plasma cylinder. That is, the equilib-
mathematically exact manner even in the nonlinear regimeium ellipsoid is here highly elongated in tkelirection. The
[10]. The solutions are exact in the sense that starting fronparticles are assumed to be trapped in the external potential
the equations of motion for the cold plasma fluaidl approxi-  field
mation of any kind(e.g., series expansions or higher-
harmonic truncationsneeds to be made. It appears that the
spatial and temporal dependence of the plasma motion can
be separated even in the nonlinear regime. The initial equa-
tions are then reduced to a system of ordinary differentialvherem s the particle mass, and, , are the frequencies of
equations that can be solved numerically or, in some inthe transverse oscillations. The transverse plasma size is
stances, even integrat¢tio,11]. small as compared to the distance between the trap elec-
Exact solutions of the nonlinear plasma equations arérodes, so thall,; is quadratic in terms of the Taylor expan-
rather rare, and the few cases in which they can be found agon.
consequently rather interesting. Such solutions usually de- In contrast to earlier investigations of trapped-plasma os-
scribe particularly simple plasma behavior. They are thusillations the trapping field has no rotational symmetry. An
especially suitable as a starting point in understanding thelliptical Paul trag 18] is an example of such asymmetry. In
underlying physics of the nonlinearity as well as the study ofa Penning trap a time-independent asymmetric trapping po-
more complex nonlinear wave interactions. They are usefulential can exist in a frame rotating with the plasma, as was
for verifying various approximations and numerical schemespbserved in a recent experiment involving a rotating Wl
and many of such solutions can also be used directly to ex- We also assume that the plasma is unmagnetized, as in the
plain observed phenomena or indirectly for the diagnostic$aul trap. For the Penning trap our results can be applied
of the plasma. only in the case of “Brillouin flow” when the plasma is

_1 2,2 2,,2
Uext_im(wlx + w3y )
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compressed to its maximum dendfifi}, since in the rotating N
frame the plasma behaves like an unmagnetized one. R=\/—
We describe the trapped plasma by the standard cold-fluid

model, i.e., the velocity satisfies the pressureless Euler ynich represents the typical radius of the plasma column.

7Tn0

equation The equilibrium values of the semiaxes are then
v q 1 > w1
EJF(V'V)'V:EE—EVUM, 1 aO:w_lR and bo:w_zR’ (6)

where the space charge electric field is purely electrostatiand without loss of generality we can assume<w,, SO

E= -V, and¢ obeys the Poisson equation thatag> b
Apart from the steady-state equilibrium, there are many
VZp=—4mqn, (2 general dynamic equilibria withv#0. For instance, the

plasma can rotate within the elliptical boundary. Leaving
whereq is the charge of the trapped particles. To close theaside these more complicated cases, we can describe the

system we have the continuity equation plasma waves in terms of a dielectric tensgr. For study-
ing linear electrostatic waves one has then only to solve the
an _ equationd;(&;;d;6¢) =0 for the perturbed electric potential
gt +V-(nv)=0, 3) and apply the appropriate boundary conditions.

In our model the plasma is described by the cold-plasma
wheren is the density. dielectric tensorg;; =(1—w§/w2) dij» so that the perturbed
For the Paul trap these equations can be applied directlyotential inside and outside the plasma obeys the Laplace
whereas for the Penning trap they are valid in the rotatingequations
frame. In this paper the analysis will be limited to two di-

mensions. We shall investigate the plasma equilibrium state, 2
- : o 1- —21V280,,=0 and V25p,,=0
linear waves as well as exact nonlinear oscillations. w2 Pin Pout™ Y
Il. LINEAR WAVES whereas the boundary conditions on the plasma suSace

We start with the description of the equilibrium state. Ear- w2
lier investigationg 12,13 showed the existence of an ellip- S¢inls= S¢ouls, ( 1— _Z)
soidal equilibrium. It can be easily verified that an immobile ®
plasma can form a uniform cylinder with elliptical cross sec-

d

% 5QDin|S:% 5‘Pout|81

wheren is a unit vector normal t&.

o, One solution isw?= w,% and 8¢,,+=0. This corresponds
X2 y2 to bulk plasma oscillations with arbitrarge;, related to
—+5=1 some density variatiod®n. The only restriction is that the
ag b plasma perturbation causes no change in the external poten-

o o tial. For example, the plasma cylinder can oscillate at the
and n=no. The space charge electric field within such aplasma frequency in a self-similar manner. We will consider
cylinder is linear{17] and the corresponding potential is such a mode in the following section.

For the other solution the plasma density is unperturbed

@=mqng(const-A;x*— Azy?), (40 andéde is a harmonic function. A comprehensive study of the
Laplace equation for an elliptical cylinder requires Mathieu
whereA;=2bg/(ag+bo) andA;=2a/(ag+bg). functions[19]. This will be considered elsewere, and here we

For a steady-statev(0) equilibrium, Eqgs.(1)—(3) are  restrict ourselves to the simple case of transverse two-
reduced to the conditioW (q¢+Ue,) =0. Thus we gef2]  dimensional (2D) oscillations with S¢=de(x,y). The
plasma configuration suggests the use of elliptic coordinates
joiAI= 0] and wiA= w3, £e(0) and e (0,27), satisfyingx=c coshécosy and
y=csinhésiny, wherec is, in general, a free parameter.

where w,= (479%ny/m)Y2 is the plasma frequency. The Settingc= \/aoz— bo2 makes the plasma boundary a surface of
condition constant¢= &,, where
a)%-i- w§=w§ (5) ¢ :Elnao-i- b
072 ag—by

thus uniquely determines the plasma density.

It is convenient to denote the number of particles per unit The coordinate systemé(v) is conformal so that the
column length by the free parametdrof the system. Ac- Laplace operator in the new system is proportional to
cordingly we can introduce the quantity 9%19&%+ %1 9n?. The corresponding harmonic functions are
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readily obtained. An important restriction is that the electricthe full system(1)—(3) and an additional equation for the
field SE= — V ¢ should be finite at the ellipse focus@sg., plasma boundarj17]
the critical points of the coordinate systenThe solution

inside the elliptic plasma cylinder can then be written as s
E-I—(V-V)S:O, (8)

S¢in=Cq coshm¢ coam#n + ¢, sinhmé sinma,

wherec, andc, are constants. Here the positive integer WhereS(xt) is arbitrary and the boundary is determined by
plays the role of the azimuthal wave number. Outside thdn€ relationS(x,t)=const. We assume that the size of the

plasma, we have trapped cloud is large compared to the Debye length, so that
the plasma can be considered to have a sharp bouh2@jy
S@our= C3 €XP(—MéE)cosmn+ ¢, exp —mé)sinmsy, We assume that the perturbed plasma is uniform,

=n(t), and has an elliptic cross section with the same ori-
because of the conditiofg,,— 0 at large distances. Here entation of the semiaxes. Thus, we have

c3 andc, are constants.

Applying the boundary conditions §t= &,, we obtain the X2 y2
following spectrum: S(xt)=—+ =,
ac b
, 1, ag—bg\™
w =5 wp 1% aptby) | m=1 (7)  where the time-dependent semiax&g) and b(t) are un-

known. The plasma velocity is chosen to be
for the oscillations.
There are two discrete series of frequencies. &gt b, a b
the spectrum reduces to the familiar relatior: w,/+/2 for Ux=Z % UyTpY
the electrostatic surface oscillations. Takiag— o, m— o

and k=m/a20=const, one can also reproduce the spectrump accordance with the predefined elliptic shape. Here the

»?=(1/2)wp[ 1+ exp(-2khy)] of surface waves in an infinite  overdots denote time derivatives. The given plasma behavior

plasma layer. can be considered as atséor solving Eqs(1)—(3) and Eq.
Using the expressior$) for the semiaxes along with Eq. (8). It is easy to see that E@8) is satisfied identically, and

(5) for the plasma frequency one can rewrite the spectrum ifhe continuity equation results ah(nab)/dt=0 so that par-
terms of the trapping parameters. In particular, the frequenticle density is

cies withm=1 are identical to the trap frequencies ,.

These modes correspond to the center-of-mass motion of the R?

column. n(t)= 2, Nos
The potential ¢;, corresponding to the quadrupoie

=2 modes is a quadratic function of the Cartesian Coordl'and the solution of the Poisson equation is of a similar struc-

fure as in Eq(4), but with time-dependent density and semi-
Xes.

Finally, it is easy to verify that Eq1) leads to two ordi-

ry differential equations for the semiaxes

an elliptical cross section, but generally with different orien-
tation and time varying semiaxes. These oscillations can be
described exactly even in the nonlinear regime. The higheﬁa
modes withm>2 involve significant changes of the plasma
shape and potential. R? R2

It should be mentioned that E¢{) does not cover all the é+wfa=w§—, b+ w§b=w,23—, 9
possible plasma modes. There are still perturbations that do a+b a+b
not involve the potential nor plasma surface motion. For ex-

ample, we can consider a velocity perturbation of the form Where the value o, is given by expressiofb).
The system(9) provides a complete description of two

a coupled nonlinear modes. Although it is rather simple, it is
V=~ QpY, vy=0x nevertheless nonintegrable. Aside from the two trivial cases
of a circular column and an infinite plasma layer, the system

where Q is infinitesimal and generally depends enThe i associated to chaotic dynamics.

perturbed plasma rotates within an elliptical boundary. The We shall first consider the basic properties of E(.

frequency of such torsion modes is identically zero in theThere is one fixed point of the motion, given by K6). It is

cold-fluid model. Here the restoration forces are from thedlways stable and corresponds to an equilibrium column.

correlation between the particles. Considering small oscillations around this point, one can im-

mediately obtain the linear limit of the two modes. One

mode corresponds to oscillations wiah— b?=const, so that

the plasma oscillates in a self-similar manner without any
In this section we discuss an exact nonlinear solution repperturbation of the external field. It is the bulk wave at the

resenting two coupled plasma modes. This is described bglasma frequency as mentioned above. For the second mode

IV. ANONLINEAR SOLUTION
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we haveab=const, so that the density remains unperturbed.
This mode can be recognized as the lower of the two quad-
rupolem=2 modes.

In general, we still have the bulk and quadrupole surface
oscillations. However, in the nonlinear regime they are 4,
coupled. Nevertheless, in two simple limiting cases the prob- at
lem can still be solved by direct integration. Foy= w, we
have an axially symmetric trapping field. Equatiqi8$ are
then clearly integrable. In fact, the quadrupole dynamics of
the non-neutral plasma column in an axially symmetric trap-
ping field is an integrable problem under much more general
conditions[21]. In particular, forw; ,=0 we have a 2D ver-

,S!0n of the,COUIomb eXpanSI(.{IQZ]. The c_’ther S_'mple lim- . FIG. 1. A Poincaresurface of section for motions corresponding
IFIng Cas_e _'S _a_ plasma layer in a_one—dlmensmnal trappingy, pyik and quadrupole modes with=0.1 andé=0. The system
field. This limit is obtained by keeping,—0,R—=, sothat s integrable, nested curves represent orbits on different tori. The
bo=const. Then we hava,—< and the plasma is trapped giscrete set of points corresponds to a 17:12 resonance orbit. The
in the region|y|<b,. The equation for the layer thickness point at the center represents the pure quadrupole surface mode.
takes the limiting formb + w%wagbo along with the new The pure bulk mode corresponds to an orbit that surrounds the
condition w,=w,, for the plasma density. The boundary of whole plot.

the layer oscillates at the plasma frequency. Note that the

plasma density is proportional tokdland behaves in a non- cially be interested in the low-order resonances, of the form
linear manner. Similar exact one-dimensional oscillations of3:2 for =1/3 and 2:1 fors=1/\/2.

a plasma layer have been considered eaffig&t. Note, that For 6=0, Egs.(10) describe two independent oscillators,
for large amplitudes(t) is negative, whereas(t) passes but there is no simple way to solve the problem #et0. On
through an infinite value. Such unphysical behavior is relatedhe other hand, the existence of resonances suggests that the
to the neglect of the pressure forces. This occurs also in 2[dynamics can be complicated. Thus we shall consider Egs.
and 3D[10]. Consequently, Eq9) are not valid for very  (10) more carefully. First, we note that the g@i0) has a
large amplitudes. Hamiltonian

V. NON-INTEGRABLE DYNAMICS 1 . . 1 U
: : , : _ H=S(u?+v?)+ —(u?=28uv+v?)+2In——1,
In this section we investigate numerically the coupled 2 4 u

nonlinear modes. From here on we will use dimensionless (12
variables. The time is normalized by« and the distance
by R. We also introduce the parameter where the constant was chosen such tHat0 at equilib-
rium.
_ w%—wf The four-dimensional phase space of the syst&f is
6= w§+w§ reduced to three dimensions by the conditlds-const. A

key question is whether an independent second integral ex-
describing the anisotropy of the trap. Finally, we pass to théSts. If it does, the system would then be integrable and the

variablesu=a+b andv=a—b in Egs.(9) to obtain phase curves lie on two-dimensional tori. A traditional way
to investigate the problem is to choose a 2D surface in the
.1 2 5 .1 1) phase space and construct a map of intersections of the phase
Ut su-g=5u vhsv=5u, (100 trajectory with the surface. Treating numerically the different
trajectories we obtain Roincaremap[25,26].
where e (0,1). The equilibrium point is If the system is integrable, the points would represent the
intersection of the tori with the 2D surface and they would
2 26 form smooth closed curves. In general, with sufficiently long
“Ozﬁ’ Uozﬁ’ integration time, most curves seem to be continuous. All or-
bits on each torus are characterized by two frequencies,
and the linear frequencies take the form namely,w, andwg given by Eqs(11) in the linear limit. On
the other hand, even for “infinite” integration time some
wp=1, wq=\/(1—52)/2, (12) orbits appear as a markedly discrete set of points on the

surface of the section. They correspond to resonance tori.
where w, and o, are for the bulk and quadrupole modes, With perturbations the resonance tori can be destroyed, pro-
respectively. An importantesonance conditiois met when  viding the “seeds” of chaotic behavior observed in noninte-
the ratiow, / wq of the frequencies is a rational numied].  grable systems.
Even in the linear approximation it is clear that for specific A series of maps with different values éfis presented in
values of § different resonances can occur. We will espe-Figs. 1-5. All trajectories have the same enekdy 0.1.
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0.4
0.2
du
T 0
-0.2
-0.4 e, —
1.8 2 2.2 2.4
u
FIG. 2. Surface of section faf = 0.1 ands=0.32. Qualitatively FIG. 4. Surface of section fdi = 0.1 ands= 0.69. Qualitatively

it is close to that of Fig. 1, but here both periodic orbits arising fromthere is no difference with Fig. 2.

the quadrupole surface and the bulk oscillations can be seen. Due to

nonlinear coupling it is impossible to describe these orbits analytiyesonances correspond to rational approximation@oWe

cally. found and displayed the lowest 17:12 resonance orbit. Recall
that resonance tori can occur as frequently as rational num-

Note that the Hamiltoniail2) supports bounded motion, so bers among irrationals, but here only the lowest resonance

that only a finite region on the surface of the section is octorresponding to our particular values of energy ahis
cupied. The excluded region is shaded. The surface of thgisplayed.

section is chosen to he=0.9%, and the coordinates on that  We now consider the perturbed system wéi# 0. In ac-

are plane (,u). We have mapped only intersections with  cordance with the KAM theorem most nonresonant tori are
>0, so that each point uniquely represents the state of theonserved and the corresponding orbits stay quasiperiodical
system. as long ass is small. Note, that all existing resonance orbits

A typical map for the integrable case=0 is presented in are of high order, so that fof<1 the system can be suc-
Fig. 1. We see a series of nested closed curves representingssfully described by means of perturbation theory. For ex-
different tori. The circles surround a point representing aample, a Poincarplot for §=0.32 (Fig. 2 is essentially the
periodic orbit with only the quadrupole mode excited. An-same as that fo6=0, the only difference being that now
other important periodic orbit corresponds to the pure bulkboth periodic orbits can be seen.
mode. This orbit happens to lie directly on the surface of the As mentioned, the rati@, /w4 is different for each torus
section(the “last” curve). We will see that for6#0 both  and is determined nonlinearly. Nevertheless, the linear ex-
periodic orbits survive and are represented by points. pressiong11) suggest that this ratio generally increases with

The other orbits are quasiperiodical with two frequenciess, so that resonances disappear and appear. For infinitesimal
wp, andwg . The former has a nonlinear shift so that the ratiovalues of the energy this happens only for a discrete sét of
wp/ wg varies from torus to torus. Thus the system obeys théor example, the resonance displayed in Fig. 1 should be
condition of isoenergetic nondegenergcand when per- observed only for6=1/17. Of course, the nonlinear fre-
turbed will be subject to the KAM theorefi25]. When the  quency shift can change this behavior and each resonance
ratio w,/wq passes through a rational value we have a periean exist in some interval of. These intervals increase with
odic orbit corresponding to the particular resonance. Fothe energy, giving rise to resonance overlapping and chaos.
small energies this ratio is close to its linear value so that all The low-order resonance tori are of special interest, be-

cause when perturbed they capture a significant part of the

FIG. 3. Surface of section fdi=0.1 andé=0.33. The signifi-
cant difference from Fig. 2 is due to the appearance of the low-order FIG. 5. Surface of section fdi=0.1 andé=0.71. Again there
3:2 resonance torus. That torus is broken, giving rise to ellipticais a low-order resonance. It is responsible for the appearance of the
and hyperbolical points. unstable hyperbolic point.
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of points (generated by a single orhitln this region the
behavior of the system is clearly chaotic. A similar transition
to chaos was also observed for other valueg.of
The results on transition to chaos, such as that in Fig. 6,
should be taken cautiously. All the chaotic regimes were ob-
tained at a high value of the energy. For such energies the
semiaxes can permanently change sign during the evolution,
as was pointed out at the end of the preceding section. For
these regimes, pressure effects, neglected in the initial equa-
tions, are important. In fact, all physically meaningful re-
gimes described by Eq6L0) are regular, corresponding only
to soft chaos onset. Nevertheless, a variety of notable phe-
nomena typical for nonintegrable systems, such as, passage
FIG. 6. Surface of section foH=4 and §=1/,/2. Periodical  through resonances and phase locking, are observed.
orbits remain, with the surrounding stable islands, but now they are
separated by stochastic regions. VI. CONCLUSION

phase space. Let us now consider the low order 3:2 reso- We have analyzed the nonlinear equations describing a
nance torus, which arises férclose to 1/3. non-neutral plasma column in an electromagnetic trap. A key

Figure 3 shows the surface of the sectionder0.33. The  feature of the trapping field is the absence of rotational sym-
resonance comes into being and the map is significantijnetry, as in the elliptical Paul trap. Our results are also ap-
changed compared to Fig. 2. The resonance torus is ddlicable to the Penning trap with a rotating wall. The equi-
stroyed giving rise to a typical chain of elliptic and hyper- librium plasma column has an elliptical cross section. An
bolic fixed points[26]. Trajectories jump successively from analytical form for the spectrum of the transverse plasma
island to island, gradually filling up the set of two closed Oscillations exists. The frequencies depend on the trap pa-
curves around the elliptic points. The entire captured area dmeters, plasma form, and density. Thus, our results can be
the surface of the section imitates the same 3:2 repeatingseful for explaining phenomena occurring in non-neutral
pattern as the initial periodic orbiphase locking For 5  Plasmas as well as the diagnostics of the latter. A fully non-
=0.34 the resonance disappears and the surface of the séfiear description of the low-order modes is possible. The
tion (not shown is similar to Fig. 2. equations for the cold plasma fluid can be expressed in terms

Another low-order 2:1 resonance exists férclose to  Of two simple ordinary differential equations for the bulk and
1/J2. Figures 4 and 5 show the surface of the sectionsfor the quadrupole surface modes. The set is found to be nonin-
—0.69 ands=0.71, respectively. Again the map is signifi- tegrable. No regime with widespread chaos was found for the
cantly changed with the birth of an unstable hyperbolicpresem pressureless plasma mo_del. Nevertheless, other im-
point. This resonance disappears fr 0.73. A passage of portant features typical for qgaswegular nc_)mntegrable sys-
our system through other resonances can also be observd@MS €Xists. These features include the birth and decay of
The open &-ike) and even broketiinto two part curves fesenances, collapse of corresponding resonance tori, phase

L " . locking, and existence of islands surrounding stable periodi-

appear in Figs. 4 and 5 due to the conditiol0 in the cal orbits. All these nonlinear phenomena should be observ-
construction of the surface of the section. Only closed curve )

: . . o . . 3ble in experiments involving asymmetric trapping fields. In
will appear if one displaysll orbit intersections with the particular, we found that in the neighborhood of resonances a

;surface ]?f tthtte)lsect|o_n.dAml)thetr).tnotable featturde IbS the F):'S(iignificant change of the plasma behavior is caused by small
ence ot stable periodical orbils represented Dy ISolate hanges in the anisotropy of the trap. For moderate energies

points for all v_alue_s ob. They give way to |solated islands all resonances are accurately predicted by the linear expres-
of regular motion in a sea of chaotic behavior as the energyions for the frequencies

increases.
Thus the phase space dynamics is regular when the tori

are intact, and exhibits features, such as, resonances and

phase locking, as is typical f@oft chaog27]. With increas- This work was partially supported by the Sonderfors-

ing energy a typical sea of chaotic behavior is obtained. Thighungsbereich 191. One of the auth¢®sA.) would like to

is illustrated in Fig. 6 with=1/y2 andH=4. A significant  thank the Humboldt Foundation for financial support and

part of the surface of the section is filled by a random splatteA.M. Ignatov for useful discussions.
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